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Abstract

Through means of the electroelastic theory for piezoelectric plates, the transverse vibration
characteristics of piezoceramic annular plates with different boundary conditions are investigated in this
work by theoretical analysis, numerical simulation and experimental verification. There are four different
boundary conditions (free–free, fixed–fixed, free–fixed, and fixed–free) to be considered herein. With the aid
of theoretical analysis, three groups of vibration modes are defined and employed for making the mode
classification. Combined with the mode shape recognition, the classification is valid for the prediction of
resonant frequency variations with various boundary conditions. Two experimental methods, laser Doppler
vibrometer (LDV) and impedance analyzer, are applied to validate the theoretical results for the free–free
boundary condition. From the experimental results, we find that the transverse vibration modes cannot be
measured by the impedance analysis and only the extensional vibration modes will be shown. However, the
transverse vibration modes of piezoceramic annular plates are obtained by the LDV system.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Because of the high electromechanical performance, the piezoelectric material is widely used in
many applications, such as ultrasonic transducers, actuators, sensors, electro-optic modulators,
and so on. Piezoelectricity describes the phenomenon in which the material generates electric
charge when subjected to stress and, conversely, generates strain when the electric field is applied.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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According to the different configurations, the piezoceramic transducers possess many vibration
modes in various application fields. In general, there are three principal vibration modes of
transducers; the extensional modes of thin piezoceramic circular or annular plates, the tangential
modes of thin piezoceramic rectangular plates, and the longitudinal modes of slender
piezoceramic cylinders; which had been addressed in many studies. Especially for piezoceramics
made of lead zirconate titanate (PZT), numerous investigations have been performed on the disk
or annulus types in the analysis and application, e.g. Langevin transducers and ultrasonic motors.
To maximize the dynamic electromechanical coupling coefficient, Ivina [1] used the finite element
method to study the symmetric modes of vibration for circular piezoelectric plates in determining
the resonant and anti-resonant frequencies, radial mode configurations, and the optimum
geometrical dimensions. Kunkel et al. [2] studied the vibration modes of PZT-5H ceramics disks
concerning the diameter-to-thickness ðD=TÞ ratio ranging from 0.2 to 10. Guo et al. [3] presented
the results for PZT-5A piezoelectric disks with D=T of 20 and 10. In that study, there were five
types of modes classified according to the mode shape characteristics, and the physical
interpretation was clarified. Iula et al. [4] proposed a matrix model of the radial symmetric mode
of a thin piezoceramic ring while the inner and outer lateral surfaces are loaded by the
surrounding medium. The resonant frequency spectrum and effective electromechanical coupling
coefficient ðkeff Þ are discussed as functions of the inner-to-outer radius ratio. Furthermore, by
using the previously proposed model, Iula et al. [5] defined the material coupling factor ðkmatÞ for
the ring geometry to take into account its variation with respect to the inner-to-outer radius ratio.
Shuyu [6] found that the thickness shearing vibration of the tangential polarized piezoceramic ring
is related to the cross-sectional shape and dimension. By theoretical and experimental
investigations, the effect of the cross-sectional shape factor on the electromechanical coupling
coefficient and resonant frequency had been verified. Takano et al. [7] employed the in-plane non-
axisymmetric vibration modes of a piezoelectric annular plate to investigate the application on an
ultrasonic motor. In use of the analysis of displacement and electromechanical coupling factor,
the favorable vibration modes are suggested for different ultrasonic motor configurations.Wang et
al. [8] employed the Kirchhoff plate model and quadratic potential function to investigate the free
vibration of a piezoelectric coupled circular plate. The theoretical model was verified by
comparing with the finite-element analysis.

Most of the research and applications about piezoceramic annular plates had been carried out
more on the extensional vibrations and less on the transverse vibrations. According to the theory
for piezoelectricity and Kirchhoff–Love plate hypotheses, the transverse vibration modes of
piezoceramic annular plates with four different boundary conditions (free–free, fixed–fixed,
free–fixed, and fixed–free) are investigated. The theoretical analysis presented in this paper can be
taken as special cases of the article by Wang et al. [8]. To validate the theoretical results, this study
utilizes two optical techniques, laser Doppler vibrometer (LDV), and the electrical impedance
analyzer for measuring the vibration properties of piezoceramic annular plates with the free–free
boundary condition. According to the experimental results, only the extensional vibration modes
are measured by the impedance analysis and the transverse vibration modes can be verified by the
LDV system [9]. Commercially available finite element analysis is also used to provide the
numerical solutions and evidences. To understand the influence on the inner-to-outer radius ratio,
the variations in resonant frequencies are calculated and classified into three groups for the
different boundary conditions in the work.
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2. Theoretical analysis for the piezoceramic annular plate

The vibration of piezoelectric material is electroelastic in nature, and it is necessary to include
the coupled electrical field with the elastic behavior. In other words, the equations of linear
elasticity are coupled to the charge equation of electrostatics by means of the piezoelectric
constants. The system of governing equations, in cylindrical coordinates, needed to determine the
vibration characteristics of piezoelectric materials are presented as follows [10–12]:

The differential equations of equilibrium are
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where srr; sry; . . . ;szz are the components of stress; u; v and w are the displacement field in the r; y
and z direction, respectively; and r is the density.

The strain–mechanical displacement relations are
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where err; ery; . . . ; ezz are the components of strain.
The linear piezoelectric constitutive equations for piezoceramic materials are
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where sE
11; s

E
12; . . . ; s

E
66 are the compliance constants; d15; d31; d33 are the piezoelectric constants;

�T11; �
T
33 are the dielectric constants; Dr;Dy;Dz are the electrical displacements, and Er;Ey;Ez are

the electrical fields.
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The charge equations of electrostatics are

qDr

qr
þ

1
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r
Dr þ
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qz
¼ 0: (4)

The electric field–electric potential relations are

Er ¼ �
qj
qr

; Ey ¼ �
1

r

qj
qy

; Ez ¼ �
qj
qz

; (5)

where j is the electrical potential.
To simplify the derivation for piezoceramic plates, the following basic hypotheses, including the

Kirchhoff–Love plate theory, are employed in the analysis.
(a)
 Normal stress szz can be neglected relative to the principal stresses, i.e. szz ¼ 0:

(b)
 The rectilinear element normal to the middle surface before deformation remains

perpendicular to the strained surface after deformation and the elongation of which can be
neglected, i.e. erz ¼ eyz ¼ 0:
(c)
 Electrical potential varies with the thickness by the square law, i.e. j ¼ j0 þ zj1 þ z2j2;
where j0;j1 and j2 are constants.
(d)
 Electrical displacement Dz is a constant with respect to plate thickness.
According to hypotheses (a) and (b), the electroelasticity relation of Eq. (3) can be simplified as
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and the planar Poisson’s ratio np ¼ �sE
12=sE

11: It is noted that ur ¼ ujz¼0 and vy ¼ vjz¼0 represent
the radial and the tangential displacements of the middle plane, respectively.

Fig. 1 shows the piezoceramic annular plate with external radius Ro; internal radius Ri; and
thickness h; the cylindrical coordinates ðr; y; zÞ with the origin in the center of the annulus are



ARTICLE IN PRESS

Ro

r

z

h

Ri

Vei�t
Polarization

�

Fig. 1. Geometry and coordinate system of the piezoceramic annular plate.

C.-H. Huang / Journal of Sound and Vibration 283 (2005) 665–683 669
employed. The piezoceramic annular plate is polarized in the thickness direction and two opposite
faces of which are covered with complete electrodes. Since the piezoceramic annular plate is thin,
the out-of-plane (transverse) vibration and the in-plane (tangential and extensional) vibration are
assumed to decouple. We will analyze in detail the dynamic characteristics for transverse
vibrations with different boundary conditions as follows.

Suppose that the piezoceramic annular plate is driven by an AC voltage Veiot and the
transverse vibration is non-axisymmetric, the displacement in the z-direction can be assumed to
have the following form:

wðr; y; tÞ ¼ W ðr; yÞeiot; (8)

where o is the angular frequency. If the time-dependent term eiot is uniformly suppressed in the
analysis, by substituting Eq. (8) into Eqs. (7a)–(7c), then Eqs. (6a)–(6c) of the stress components
can be expressed as
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Herein it is assumed that the stresses as above are induced by the out-of-plane displacement
W ðr; yÞ only. For the electrical potential boundary condition
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2
¼ �V (10)

we can find that the electrical field is, by combining Eqs. (10), (9a) and (9b),
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where kp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2d2

31=�
T
33sE

11ð1� npÞ

q
is the planar electromechanical coupling coefficient.

Applying the integral operator
R h=2
�h=2 . . . dz to the equilibrium equations. (1a)–(1c), and

using Eqs. (9a)–(9c) and (11), the governing equation of the transverse vibration is obtained as the
form

D0r4W � rho2W ¼ 0; (12)

where r4 is a biharmonic operator and the equivalent bending stiffness is defined by

D0 ¼
h3

12



2� ð1� npÞk
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: (13)

According to Eq. (12), the general solutions of non-axisymmetric transverse vibration for the
piezoceramic annular plate is

W ðr; yÞ ¼ ½C
ðnÞ
1 JnðbrÞ þ C

ðnÞ
2 YnðbrÞ þ C

ðnÞ
3 InðbrÞ þ C

ðnÞ
4 KnðbrÞ� cos ny; n ¼ 0; 1; 2; 3; . . . (14a)

in which C
ðnÞ
1 –C
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2
p

: (14b)

In Eq. (14a), Jn and Yn are the Bessel functions of the first and second kinds, as well as In and Kn

are the modified Bessel functions of the first and second kinds, respectively. Under consideration
of the different boundary conditions on the inner and outer surfaces, four types of piezoceramic
annular plates will be investigated in this analysis. For the purpose of description, a notation will
be adopted that the symbolism free–fixed, for example, will identify an annulus with the inner and
outer circumferences having free and fixed boundary conditions, respectively. It is noted that the
theoretical model can be performed for the case of a piezoceramic circular plate and which is the
same as [9].

(1) The free–free boundary condition. For the circumferential free boundary conditions at r ¼ Ri

and Ro; we have Z h=2

�h=2
zsrr dz ¼ 0 (15a)

and Z h=2

�h=2
srz dz þ

1

r

q
qy

Z h=2

�h=2
zsry dz ¼ 0 (15b)

From Eqs. (15a) and (15b), a system of linear equations is obtained as

½A� 
 ½C� ¼ ½F �; (16)
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where ½C� ¼ ½C
ðnÞ
1 ;CðnÞ

2 ;CðnÞ
3 ;CðnÞ

4 �T; ½A� is a fourth-order square matrix and ½F � is a 41 zero
matrix. The matrix elements of ½A� are
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Ri
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and x ¼ bRo: (17)

To obtain a non-trivial solution for the constants C
ðnÞ
1 –C

ðnÞ
4 ; the determinant of coefficient

matrix ½A� must be equal to zero and that will yield the characteristic equation of resonant
frequencies for transverse vibrations as

det½A� ¼ 0 (18)

It should be noted that the value n in Eq. (18) refers to the number of nodal diameters, and the
sequence of roots represents the number of nodal circles. From Eqs. (14b), (17) and (18), we can
obtain the expression of transverse resonant frequencies for piezoceramic annular plates with
circumferentially free boundary conditions

f ¼
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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24rsE
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vuut (19)
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Upon utilization of Eq. (6d), the electrical current I can be expressed as

I ¼
q
qt

Z Z
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Dz ds
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Z 2p
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d31ð1þ npÞz
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( )
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2pV�T33ðk

2
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h

 R2

oð1� a2Þ: ð20Þ

It is shown clearly from Eq. (20) that the electrical current I does not approach to infinity even
if the transverse vibrations are excited at resonant frequencies. This implies that the resonant
frequencies of transverse vibrations can not be measured by the impedance variation method,
such as an impedance analyzer.

(2) The fixed–fixed boundary condition. For the circumferential fixed boundary conditions at
r ¼ Ri and Ro; we have

W ¼ 0 (21a)

and

qW

qr
¼ 0: (21b)

As the similar procedure, we also obtain the fourth-order coefficient matrix ½A� and the
elements of which are

A11 ¼ JnðaxÞ; A12 ¼ YnðaxÞ; A13 ¼ InðaxÞ; A14 ¼ KnðaxÞ;

A21 ¼ �axJnþ1ðaxÞ þ nJnðaxÞ; A22 ¼ �axYnþ1ðaxÞ þ nYnðaxÞ;

A23 ¼ axInþ1ðaxÞ þ nInðaxÞ; A24 ¼ �axKnþ1ðaxÞ þ nKnðaxÞ;

A31 ¼ JnðxÞ; A32 ¼ YnðxÞ; A33 ¼ InðxÞ; A34 ¼ KnðxÞ;

A41 ¼ �xJnþ1ðxÞ þ nJnðxÞ; A42 ¼ �xYnþ1ðxÞ þ nYnðxÞ;

A43 ¼ xInþ1ðxÞ þ nInðxÞ; A44 ¼ �xKnþ1ðxÞ þ nKnðxÞ:

By equating the determinant of ½A� to zero, the characteristic equation of resonant frequencies
is obtained. With the aid of Eq. (19), the resonant frequencies are calculated for piezoceramic
annular plates with the fixed–fixed boundary conditions. In accordance with hypothesis (d) that
Dz is a constant with respect to plate thickness, the expression of the electrical current I for the
fixed–fixed boundary condition is the same as Eq. (20).

(3) The free-fixed and fixed-free boundary conditions. By properly abstracting the elements of
coefficient matrices from both situations (1) and (2) mentioned above, we could easily obtain the
characteristic equations and resonant frequencies for the free–fixed and fixed–free boundary
conditions. The derivation is suppressed and only the numerical results are presented in the next
section.
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3. Theoretical and experimental results

From the solutions for characteristic equations of resonant frequencies, the dependence of
frequency parameter ðxÞ on inner-to-outer radius ratios ðaÞ is discussed. The results as shown in
Figs. 2–5 are the first six transverse vibration modes for the four types of boundary conditions. In
these figures, the frequency parameter square ðx2Þ is plotted as the ordinate to exhibit the
variations in resonant frequencies properly. For the free–free boundary condition shown in Fig. 2,
it is found that the resonant frequencies of modes 2, 4, and 6 will approach infinity when the ratio
a increases, while those of modes 1, 3, and 5 are finite values. For simplicity, the vibration modes
are classified into two groups, namely, Group I and Group II. When the ratio a increases from
zero to one, the resonant frequency of Group I will reach a maximum and then gradually decrease
to a minimum at a ¼ 1: For Group II, the resonant frequency reaches a minimum and increases
rapidly to infinity as a ! 1: Nevertheless, the resonant frequency variations in the fixed–fixed
boundary condition show nearly the same trend and with the minimum value at a ¼ 0 as shown in
Fig. 3. Obviously, the frequency variation tendency is neither Group I nor II and will be referred
to as Group III. To know the particular features for Groups II and III, it is necessary to recognize
the characteristics of mode shapes at resonance. For the annulus with the fixed boundary or the
mode shape including nodal circles, the resonant frequency will increase rapidly and approach
infinity for a ! 1: On the other hand, the mode shapes of Group I, which consist of nodal
diameters only, will degenerate into the nodal points for a ! 1 as is expected. According to the
classifications, the frequency variations of the free–fixed and fixed–free boundary conditions, as
shown in Figs. 4 and 5, are recognized as Groups II and III, respectively. Moreover, Fig. 5 reveals
that there is almost no difference among the first three modes for the fixed–free boundary
0 0.2 0.4 0.6 0.8 1

0

40

80

120

160

Free-Free
Mode 1
Mode 2
Mode 3
Mode 4
Mode 5
Mode 6

α

ξ2

Fig. 2. The variation of frequency parameter with different a values for the free–free boundary condition.
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Fig. 3. The variation of frequency parameter with different a values for the fixed–fixed boundary condition.
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Fig. 4. The variation of frequency parameter with different a values for the free–fixed boundary condition.
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conditions. This phenomenon also occurs in the case of fixed–fixed boundary conditions for the
first two modes.

As a verification example, the piezoceramic annulus with Ro ¼ 15mm; Ri ¼ 7:5mm; and h ¼

1mm is selected for experimental investigations and the modal number of which is PIC-151
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Fig. 5. The variation of frequency parameter with different a values for the fixed–free boundary condition.

Table 1

Material properties of piezoceramics PIC-151

PIC-151 Ceramics

sE
11ð10

�12 m2=NÞ 16.83

sE
33

19.0

sE
12

�5.656

sE
13

�7.107

sE
44

50.96

sE
66

44.97

d31 ð10�10 m=VÞ �2.14

d33 4.23

d15 6.1

�T11ð10
�9 F=mÞ 17.134

eT33 18.665

r ðkg=m3Þ 7800
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(Germany Physik Instrument Company). The polarization is in the z-direction as shown in Fig. 1
and two opposite faces of the specimen are completely coated with silver electrodes. The
electroelastic properties of PIC-151 piezoceramics are listed in Table 1. Table 2(a)–(d) shows the
theoretical and finite element method (FEM) results for the first six transverse vibration modes of
the four different boundary conditions. These results, including the resonant frequencies and
mode shapes, are all calculated for the inner-to-outer radius ratio a ¼ 0:5: To recognize the mode
shapes in Table 2, the symbol n and s illustrate the number of nodal diameters and nodal circles,
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Table 2

Mode Mode (a) Theory (b) FEM (c) LDV Error

number shape (Hz) (Hz) (Hz) (a)/(b) (%)

(a) Results of resonant frequencies obtained by theory, FEM, and LDV for the free–free boundary

condition

1

ðn ¼ 2; s ¼ 0Þ 2665 2629 2508 1.37

2

ðn ¼ 0; s ¼ 1Þ 6089 6028 5891 1.01

3

ðn ¼ 3; s ¼ 0Þ 7169 7040 6732 1.83

4

ðn ¼ 1; s ¼ 1Þ 10 816 10 282 10 047 5.19

5

ðn ¼ 4; s ¼ 0Þ 13 282 12 936 12 438 2.67

6

ðn ¼ 2; s ¼ 1Þ 19 878 18 666 18 073 6.49
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Mode Mode Theory FEM Error

number shape (Hz) (Hz) (a)/(b) (%)

(b) Results of resonant frequencies obtained by theory and FEM for the fixed–fixed boundary condition

1

ðn ¼ 0; s ¼ 0Þ 65 913 58 756 12.18

2

ðn ¼ 1; s ¼ 0Þ 66 636 59 306 12.36

3

ðn ¼ 2; s ¼ 0Þ 68 919 61 079 12.84

4

ðn ¼ 3; s ¼ 0Þ 73 060 64 394 13.46

5

ðn ¼ 4; s ¼ 0Þ 79 440 69 638 14.08

6

ðn ¼ 5; s ¼ 0Þ 88 398 77 105 14.65

Table 2 (continued )
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Mode Mode Theory FEM Error

number shape (Hz) (Hz) (%)

(c) Results of resonant frequencies obtained by theory and FEM for the free–fixed boundary condition

1

ðn ¼ 0; s ¼ 0Þ 12 320 12 182 1.13

2

ðn ¼ 1; s ¼ 0Þ 14 699 14 249 3.16

3

ðn ¼ 2; s ¼ 0Þ 21 159 20 050 5.53

4

ðn ¼ 3; s ¼ 0Þ 31 009 29 049 6.75

5

ðn ¼ 4; s ¼ 0Þ 44 009 40 867 7.69

6

ðn ¼ 5; s ¼ 0Þ 59 922 55 057 8.84

Table 2 (continued )
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Table 2 (continued )

Mode Mode Theory FEM Error

number shape (Hz) (Hz) (%)

(d) Results of resonant frequencies obtained by theory and FEM for the fixed–free boundary condition

1

ðn ¼ 1; s ¼ 0Þ 9977 9796 1.85

2

ðn ¼ 0; s ¼ 0Þ 9946 9865 0.82

3

ðn ¼ 2; s ¼ 0Þ 10 279 10 012 2.67

4

ðn ¼ 3; s ¼ 0Þ 12 046 11 606 3.79

5

ðn ¼ 4; s ¼ 0Þ 16 090 15 424 4.32

6

ðn ¼ 5; s ¼ 0Þ 22 441 21 433 4.70
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respectively. For example, the value s ¼ 0 shown in Table 2(a)–(d) represents that no nodal circle
is present between the inner and outer circumferences. It is also indicated that the order of mode
shapes is not permanent and may be changed in light of different values of a: Whenever the curves
of frequency parameter intersect at certain a value, the order of these two modes exchange with
each other. The finite element calculation is performed by the commercially available software
ABAQUS finite element package [13] in which 20-node three-dimensional solid piezoelectric
elements (C3D20E) are selected to analyze the problem. The electrical potential on the surfaces
z ¼ �h=2 is specified to ‘‘zero’’ for simulation the closed-circuit condition in order for the
resonant frequency extraction. As seen in Table 2, the error will increase not only for the higher
modes, but also vary with the boundary conditions. The thickness of the piezoceramic annulus
also shows significant difference between the theoretical and numerical results, because the
Kirchhoff–Love plate hypotheses and three-dimensional element simulations are employed for
theory and FEM, respectively.

The resonant frequency of a piezoceramic material is conventionally measured by an impedance
analysis, because the electrical impedance of which will drop to a local minimum at resonance.
Using an HP4194A impedance/gain-phase analyzer (Hewlett Packard), we perform the
experimental impedance analysis of the piezoceramic annular plate with the free–free boundary
condition. To simulate the free–free boundary, the piezoceramic annular plate is supported on a
soft sponge. The local minimum and maximum appearing in the impedance variation curve
correspond to the resonant and anti-resonant frequencies, respectively. Both the experimental and
FEM results are available in Fig. 6. According to Eq. (20), the transverse vibration modes can not
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Fig. 6. Experimental impedance variation curve of the piezoceramic annular plate.
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be obtained by impedance analysis and, in fact, only the first extensional vibration mode is
indicated in Fig. 6. This phenomenon can be explained qualitatively by means of the
characteristics of piezoelectricity. When the piezoceramic plate vibrates at a resonant frequency,
the charge will greatly be induced on the electrode surfaces owing to the vibration deformation,
named the direct piezoelectric effect, and the impedance will drop to a local minimum value.
However, if the summation of the induced charge distributed over the electrode surfaces is zero,
we are not able to find the large variation of impedance at the resonant frequency.

The other experimental technique called the laser Doppler vibrometer (LDV) is also
employed to validate the transverse vibration modes, and the gain spectrum of which
is shown in Fig. 7. The boundary condition configuration for LDV experiment is the
same as that for impedance analysis. For the LDV system, a built-in dynamic signal
analyzer (DSA) composed of dynamic signal analyzer software and a plug-in waveform
generator board can provide the specimen with the swept-sine excitation signal. By
the DSA calculation, the swept-sine excitation signal and the response measured by LDV are
taken as input and output, respectively. After the fast Fourier transform (FFT) processing of the
input and output with the DSA, the ratio of output/input (gain) is obtained. Then the resonant
frequencies of transverse resonance can be obtained via peaks appearing in the frequency response
curve. In Fig. 7, the first six peaks are clearly corresponding to the first six transverse resonant
frequencies. The comparison of resonant frequencies obtained from the analytical method
and LDV experimental measurement is in good agreement as shown in Table 2(a). This
result apparently implies that only the vibration amplitude measurement can be used to obtain
the transverse vibration of piezoceramic annular plates, meanwhile the impedance analysis
is ineffective.
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Fig. 7. LDV output gain spectrum of transverse vibrations for the piezoceramic annular plate.
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4. Conclusions

The majority of the previous works on vibration investigation of piezoceramic annular plates
are analytical and numerical results for in-plane (tangential or radial extensional) modes. There
are very few articles available for the out-of-plane (transverse) modes of vibrating piezoceramic
annuli. In this study, the transverse vibration characteristics of piezoceramic annular plates with
four different boundary conditions are explored in details. The piezoceramic plate with crystal
symmetry class C6 mm; can be indeed served as the transverse isotropic plate for flexural resonance.
Consequently, both the non-axisymmetric and axisymmetric modes will be present in the
analytical and experimental investigations. The resonant frequencies of transverse vibrations,
which are much lower than those of in-plane vibrations, are an important factor in the transducer
design and application. By the two experimental techniques, the impedance and LDV
measurements, it is shown that only the resonant frequencies of radial extensional vibration
can be measured by the impedance analysis, and that the existence of transverse vibrations can be
verified by using the LDV techniques. Good agreement of the resonant frequencies is obtained for
experimental measurements and theoretical predictions. With reference to the variation in
resonant frequencies, the transverse vibration modes are classified into three groups (Groups I, II,
and III). The features of Group II and III are that the resonant frequency will approach infinity as
a ! 1 when the corresponding mode shape includes the nodal circle or the annulus is with the
fixed boundary. On the contrary, the resonant frequencies of Group I vibration modes are finite
and the corresponding mode shapes will degenerate into the nodal points for a ! 1:
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